Example 1 (Section 1.3). Sketch the least positive angle θ and find the values of th esix trigonometric functions of θ if the terminal side of an angle θ in standard position is defined by

$$
-\sqrt{5} x+y=0
$$

where $x \geq 0$.
The graph of $-\sqrt{5} x+y=0$ is...

The legs of the triangle is $x=1$ and $y=\sqrt{5}$. The hypotenuse of the triangle is

$$
r=\sqrt{1^{2}+(\sqrt{5})^{2}}=\sqrt{6}
$$

$$
\begin{array}{ll}
\cos (\theta)=\frac{1}{\sqrt{6}} & \sin (\theta)=\frac{\sqrt{5}}{\sqrt{6}} \\
\tan (\theta)=\frac{\sqrt{5}}{1} & \cot (\theta)=\frac{1}{\sqrt{5}} \\
\sec (\theta)=\frac{\sqrt{6}}{1} & \csc (\theta)=\frac{\sqrt{6}}{\sqrt{5}}
\end{array}
$$

Example 2 (Section 1.4). Find the exact value of each of the remaining trigonometric functions of θ.

$$
\sec (\theta)=-3
$$

where $\sin (\theta)>0$.
Since $\sec (\theta)=-3$ and $\sin (\theta)>0$ we know that $x=-1$ and $r=3$. To find y we solve the equation

$$
(-1)^{2}+y^{2}=3^{2}
$$

and we will get $y=\sqrt{8}$ or $2 \sqrt{2}$.

With this triangle we have:

$$
\begin{array}{ll}
\cos (\theta)=\frac{-1}{3} & \sin (\theta)=\frac{\sqrt{8}}{3} \\
\tan (\theta)=\frac{\sqrt{8}}{-1} & \cot (\theta)=\frac{-1}{\sqrt{8}} \\
\sec (\theta)=\frac{3}{-1} & \csc (\theta)=\frac{3}{\sqrt{8}}
\end{array}
$$

Example 3 (Section 2.1). Write the following function in terms of its cofunction. Assume that all angles in which an unknown appears are acute angels.

$$
\sec \left(\beta+15^{\circ}\right)
$$

We know that $\cos (\theta)=\sin (90-\theta)$. Further, we know $\cos (A)=\sin (B)$ when $A+B=90$. Here we have an $A=\beta+15$ need to find B.

$$
\begin{aligned}
A+B & =90 \\
(\beta+15)+B & =90 \\
B & =90-\beta-15 \\
B & =75-\beta \\
\sec (\beta+15) & =\frac{1}{\cos (\beta+15)} \\
& =\frac{1}{\sin (75-\beta)} \\
& =\csc (75-\beta)
\end{aligned}
$$

Example 4 (Section 2.2). Find reference angle:

- The reference angle for 92° is $180-92=88$.
- The reference angle for 218° is $218-180=38$.
- The coterminal angle for -150° is $-150+360=210$ and the reference angle for -150° is $210-180=30$.
- The coterminal angle for -45° is $-45+360=315$ and the reference angle for -45° is $360-315=$ 45.

Example 5 (Section 2.2). Find all values of θ, if $\theta \in[0,360)$ and has the given function values.

$$
\sec (\theta)=\sqrt{2}
$$

Here we have the following triangle:

Since secant is associated with cosine we also have the following triangle:

Notice that $\theta_{1}=\theta_{2}^{\prime}=45^{\circ}$. A reference angle of 45° in quadrant four is:

$$
360-\theta_{2}=\theta_{2}^{\prime} \rightarrow \theta_{2}=315
$$

Therefore, the solution is $\theta=\left\{45^{\circ}, 315^{\circ}\right\}$.

