First Law of Thermodynamics: $\Delta E_{int} = Q - W$

Summary of Thermodynamic Relationships Involving IDEAL GASES:

Equation of State: $PV = nRT$	For Closed System: $\frac{PV}{T} = nR = \text{constant}$
-------------------------------	--

Process	ΔE_{int}	Q	W	
Isochoric ($\Delta V = 0$)	$nc_v\Delta T$	$nc_v\Delta T$	0	
Isobaric ($\Delta P = 0$)	$nc_v\Delta T$	$nc_{p}\Delta T$	$P\Delta V$	
Isothermal $(\Delta T = 0)$	0	$nRT \ln \left(\frac{V_f}{V_i} \right)$	$nRT \ln \left(\frac{V_f}{V_i} \right)$	
Adiabatic ($Q = 0$)	$nc_v\Delta T$	0	$\frac{P_f V_f - P_i V_i}{1 - \gamma} = \frac{nR(\Delta T)}{1 - \gamma}$	
Cycle	0	$\oint dQ = \text{Area of Cycle}$	$\oint dW = \text{Area of Cycle}$	

$$c_p - c_v = R$$
 $c_v = \left(\frac{f}{2}\right)R$ $\gamma = \frac{c_p}{c_v} = 1 + \frac{2}{f}$

(where f = # of degrees of freedom)

Type of Gas	C _V	C _p	f	γ
Monatomic	$\frac{3}{2}R$	$\frac{5}{2}R$	3	$\frac{5}{3}$
Diatomic (Rigid)	$\frac{5}{2}R$	$\frac{7}{2}R$	5	$\frac{7}{5}$
Diatomic (w/ Vib.)	$\frac{7}{2}R$	$\frac{9}{2}R$	7	$\frac{9}{7}$
Polyatomic (Rigid)	3 <i>R</i>	4 <i>R</i>	6	$\frac{4}{3}$

For adiabatic processes: $PV^{\gamma} = \text{constant}$

 $TV^{\gamma-1} = \text{constant}$

 $P^{1-\gamma}T^{\gamma} = \text{constant}$