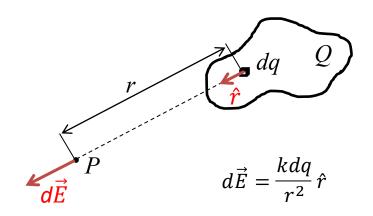
Magnetic Fields due to Currents

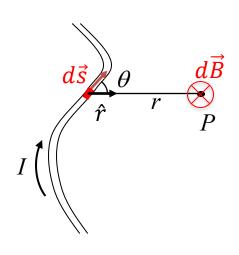
Biot-Savart Law & Ampere's Law

Defining Magnetic Field

Just as we defined the \vec{E} -field at a point P due to a distribution of charge, we use a similar procedure to define a \vec{B} -field.



Consider arbitrary wire carrying a steady current. An expression for the magnetic field at a point P was discovered by Jean Baptiste Biot and Felix Savart in 1820. The \vec{B} -field point P from each segment of the wire depends on several factors...

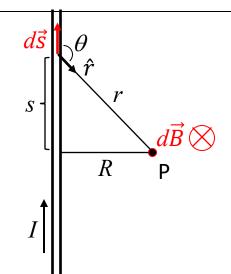


Experiments show...

- 1. $d\vec{B} \perp d\vec{s}$ and $d\vec{B} \perp \hat{r}$
- 2. $d\vec{B} \propto \frac{1}{r^2}$, where r is the radial distance from the $d\vec{s}$ to P.
- 3. $d\vec{B} \propto I$ and $d\vec{B} \propto \text{length of } d\vec{s}$
- 4. $d\vec{B} \propto \sin \theta$, where q is the angle between $d\vec{s}$ and \hat{r} .

Summarizing these result compactly:
$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \hat{r}}{r^2}$$

This relationship is known as the Biot-Savart law.



Calculate the \vec{B} -field a distance R from a long straight wire carrying a steady current I.

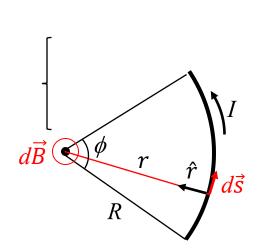
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{s} \times \hat{r}}{r^2} \,,$$

where $d\vec{s} \times \hat{r} = (ds)(1)(\sin \theta)$ in this case.

Note:
$$r^2 = s^2 + R^2$$
 and $\sin(180^\circ - \theta) = \sin \theta = \frac{R}{(s^2 + R^2)^{\frac{1}{2}}}$.

So,
$$\left| \frac{d\vec{s} \times \hat{r}}{r^2} \right| = \frac{R \, ds}{\left(s^2 + R^2\right)^3/2}$$
, directed into screen at point P.

$$\therefore |\vec{B}| = \int dB = \frac{\mu_0 IR}{4\pi} \int_{-\infty}^{+\infty} \frac{ds}{(s^2 + R^2)^{3/2}} \quad \text{or } B = \frac{\mu_0 I}{2\pi R}.$$



Calculate the \vec{B} -field the center of a circular arc spanning an angle ϕ and of radius R carrying a steady current I.

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I d\vec{s} \times \hat{r}}{r^2} ,$$

where $d\vec{s} \times \hat{r} = (ds)(1)(\sin 90^\circ) = ds$ in this case.

Note: r = R = constant and $ds = Rd\phi$. So, $\left| \frac{d\vec{s} \times \hat{r}}{r^2} \right| = \frac{Rd\phi}{R^2} = \frac{d\phi}{R}$ and is directed out of the screen by the RHR.

$$\therefore |\vec{B}| = \int dB = \frac{\mu_0 I}{4\pi R} \int_0^{\phi} d\phi = \frac{\mu_0 I}{4\pi R} \quad \text{or} \quad B = \frac{\mu_0 I \phi}{4\pi R}.$$

(Note that ϕ must be in radian units in this expression!)

Calculate the \vec{B} -field a distance x along the symmetry axis from the center of a ring of radius R carrying a steady current I.

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{s} \times \hat{r}}{r^2} \,,$$

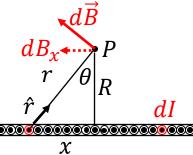
where $d\vec{s} \times \hat{r} = (ds)(1)(\sin \theta)$ in this case.

By symmetry, $B_y = B_z = 0$. $dB_x = dB\cos\theta$, where $\cos\theta = \frac{R}{r}$

Note:
$$r = (x^2 + R^2)^{1/2}$$
, so that $\left| \frac{d\vec{s} \times \hat{r}}{r^2} \right| \cos \theta = \frac{R \, ds}{(x^2 + R^2)^{3/2}} = (\text{constant})(\text{ds})$.

$$\therefore |\vec{B}| = \int dB = \frac{\mu_0 IR}{4\pi (x^2 + R^2)^{3/2}} \oint ds \qquad \text{or} \qquad \vec{B} = \frac{\mu_0 IR^2}{2(x^2 + R^2)^{3/2}} \hat{\iota} .$$

infinite sheet that carries a current dI per length dx. $\vec{r} = \frac{d\vec{B}}{R}$ $d\vec{B} = \frac{\mu_0}{R} I d\vec{s} \times \hat{r}$



$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{s} \times \hat{r}}{r^2}$$
, where $d\vec{s} \times \hat{r} = (ds)(1)(\sin 90^\circ)$ in this case.

By symmetry,
$$B_y = 0$$
. $dB_x = dB\sin\theta$, where $\sin\theta = \frac{R}{r}$

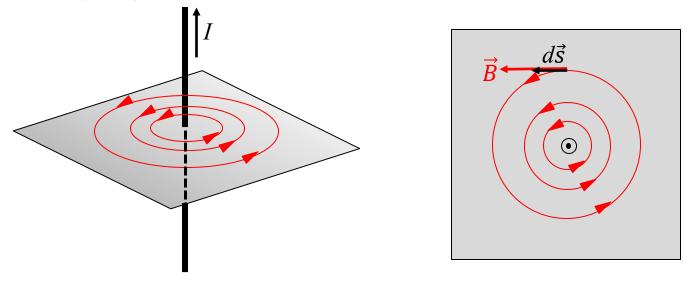
Note:
$$r = (x^2 + R^2)^{1/2}$$
, so that $\left| \frac{d\vec{s} \times \hat{r}}{r^2} \right| \sin \theta = \frac{R dx}{(x^2 + R^2)^{3/2}}$

$$|\vec{B}| = \int_{-\infty}^{+\infty} dB_x = 2 \int_0^{+\infty} \frac{\mu_0 R \, dI}{2\pi (x^2 + R^2)^{3/2}}$$
, where $dI = nIdx$

Do integral (by trig substitution) to get.. $B = \frac{1}{2}\mu_0 nI$.

Ampere's Law

By now, you recognize that the magnetic field generated by a current carrying wire forms concentric circles around the wire.

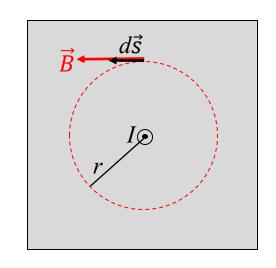


It has been found that the product of the component of \vec{B} along a small step $d\vec{s}$ summed around a closed contour enclosing a current equals that enclosed current times the permeability constant. That is, $\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{enc}$. This is Ampere's law.

Ampere's Law Example #1

Revisiting the long straight wire...

Calculate the magnetic field at a distance r from the wire. Note that at any point on a given field line, \vec{B} and $d\vec{s}$ are parallel and that $|\vec{B}|$ is a constant. Choose an "Amperian loop" that takes advantage of this symmetry: a circle or radius r.



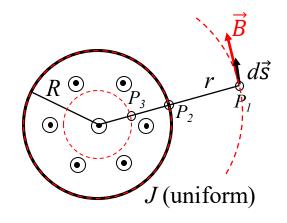
Then
$$\oint \vec{B} \cdot d\vec{s} = \oint B ds = B \oint ds = B(2\pi r)$$

The current enclosed is just *I*. So, $B(2\pi r) = \mu_0 I$. Solve for $B = \frac{\mu_0 I}{2\pi r}$.

This is the same result found using the Biot-Savart law!

Ampere's Law Example #2

Consider a circular wire with a uniform current density carrying a total current I. If the wire has a radius R, calculate the \vec{B} -field at a distance r from the wire for r > R (outside), r = R (on the surface), and r < R (inside the wire).



As in the previous example, \vec{B} and $d\vec{s}$ are parallel and that $|\vec{B}|$ is a constant at any point on a given field line. Choosing a circular Amperian loop,

$$\oint \vec{B} \cdot d\vec{s} = \oint B ds = B \oint ds = B(2\pi r)$$

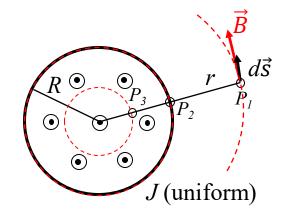
for all three points, P_1 , P_2 , and P_3 .

Ampere's Law Example #2 cont'd

At
$$P_1 (r > R)$$
: $I_{enc} = I$, so $B = \frac{\mu_0 I}{2\pi r}$.

At
$$P_2$$
 $(r = R)$: $I_{enc} = I$, so $B = \frac{\mu_0 I}{2\pi R}$.

At
$$P_3$$
 $(r < R)$: $I_{enc} = JA_{loop}$, where



$$J = \frac{I}{A_{wire}} = \frac{I_{enc}}{A_{loop}}.$$

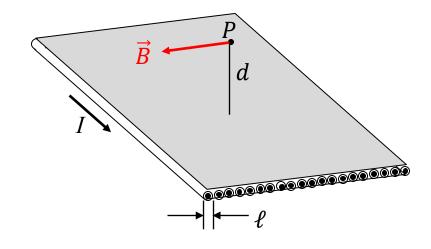
Then
$$I_{enc} = I \frac{\pi r^2}{\pi R^2}$$
 and $B(2\pi r) = \mu_0 I_{enc} = \mu_0 I \frac{r^2}{R^2}$

Solve for
$$B = \frac{\mu_0 Ir}{2\pi R^2}$$
.

Example #3

Revisit the infinite sheet...

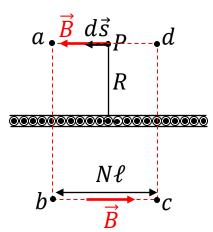
Calculate the \overrightarrow{B} -field a distance d from a thin infinite sheet that Carries a current I per length ℓ .



Recall that by symmetry, the \vec{B} -field at *any point* above the sheet to directed to the left. Using a similar argument, the \vec{B} -field below the sheet is directed to the the right.

Example #3 cont'd

To use Ampere's law for this situation, choose a rectangular Amperian loop that passes through point P and passes through the sheet equally on each side of the sheet. By traversing the loop counter-clockwise,



The \vec{B} -field is either paralle or perpendicular to the $d\vec{s}$ steps.

$$\oint \vec{B} \cdot d\vec{s} = \int_{a}^{b} \vec{B} \cdot d\vec{s} + \int_{b}^{c} \vec{B} \cdot d\vec{s} + \int_{c}^{d} \vec{B} \cdot d\vec{s} + \int_{d}^{a} \vec{B} \cdot d\vec{s} = 2B\ell$$

$$0 \quad (\vec{B} \perp d\vec{s}) \quad \vec{B}\ell \quad (\vec{B} \parallel d\vec{s}) \quad 0 \quad (\vec{B} \perp d\vec{s}) \quad \vec{B}\ell \quad (\vec{B} \parallel d\vec{s})$$

 $\therefore 2B\ell = \mu_0 I_{enc} = \mu_0 n\ell I$, where *n* is the linear density of the "wires." Solve for $B = \frac{\mu_0 n\ell I}{2\ell}$ or $B = \frac{\mu_0 nI}{2\ell}$.

(Note that this is the same expression found using the Biot-Savart law!)

Forces Between Parallel Currents

Consider two parallel wires (a and b) carrying currents Ia and Ib in the same direction. Since each current generates a magnetic firld at the location of the other wire, these two wires exert forces on each other.

The magnetic force on wire b due to the \vec{B} -field generated by wire a:

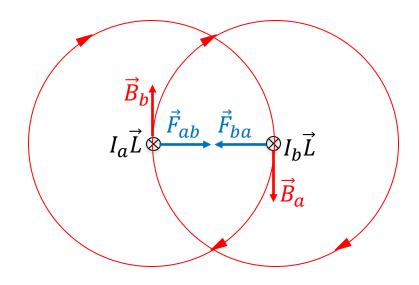
$$\vec{F}_{ba} = I_b \vec{L} \times \vec{B}_a$$

$$\vec{F}_{ba} = I_b L B_a = I_b L \frac{\mu_0 I_a}{2\pi d} \text{ (left)}$$

The magnetic force on wire a due to the \vec{B} -field generated by wire b:

$$\vec{F}_{ab} = I_a \vec{L} \times \vec{B}_b$$

$$\vec{F}_{ba} = I_a L B_b = I_a L \frac{\mu_0 I_b}{2\pi d} \text{ (right)}$$



Note that $\vec{F}_{ba} = -\vec{F}_{ba}$

Punchline:

Parallel currents attract each other.

(A similar analysis would show that opposite currents repel each other.)