Systems of Particles

Center of Mass

Defining Center of Mass

Consider an extended object that is flipped across a room. Every part of the object moves in a very different way with respect to every other point.
Every object has a special point which does move as though it was a point particle with a total mass equal to that of the extended object.
Center of mass (in 1-D for a 2-particle system)

$$
x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

Extend to the case of n particles:

$$
x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+\ldots+m_{n} x_{n}}{\sum_{i} m_{i}}=\frac{\sum_{i} m_{i} x_{i}}{M}
$$

If the particles are distributed in 3 dimensions, we can generalize this to:

$$
x_{c m}=\frac{\sum_{i} m_{i} x_{i}}{M} \quad y_{c m}=\frac{\sum_{i} m_{i} y}{M} \quad z_{c m}=\frac{\sum_{i} m_{i} z_{i}}{M}
$$

where again, $M=\sum_{i} m_{i}$.

Example \#1

Three masses:
$m_{l}=1.00 \mathrm{~kg}$ located at $(2.00 \mathrm{~m}, 0,0)$, $m_{2}=2.00 \mathrm{~kg}$ located at $(1.00 \mathrm{~m}, 2.00,0)$, $m_{3}=3.00 \mathrm{~kg}$ located at $(4.00 \mathrm{~m}, 3.00,0)$.

- Locate the center of mass.

Continuous Distributions of Mass

What if the system gets so large that it has too many particles over which to sum?
Then the particles are just infinitesimal mass elements $d m$. In that case, we replace the summation by an integration.

$$
x_{c m}=\frac{\int x d m}{M} \quad y_{c m}=\frac{\int y d m}{M} \quad z_{c m}=\frac{\int z d m}{M}
$$

Example \#2

Consider the thin metal sheet shown.

- Locate the
center of mass.

Example \#3

Uniform rod of mass M and length L.

We know by symmetry that $x_{c m}=\frac{L}{2}$.
Let's find $x_{c m}$ using integration. Mathematically, the rod has constant linear mass density $\mu(x) \equiv \frac{M}{L}$.

$$
x_{c m}=\frac{\int_{0}^{L} x d m}{\int_{0}^{L} d m}=\frac{\int_{0}^{L} x \mu d x}{\int_{0}^{L} \mu d x}=\frac{L}{2}
$$

Example \#4

A non-uniform rod of length L and a linear mass density that varies according to $\mu(x)=C x$, where C is a constant.

$$
x_{c m}=\frac{\int_{0}^{L} x d m}{\int_{0}^{L} d m}=\frac{\int_{0}^{L} x \mu(x) d x}{\int_{0}^{L} \mu(x) d x}=\frac{\int_{0}^{L} C x^{2} d x}{\int_{0}^{L} C x d x}=\frac{2 L}{3}
$$

Example \#5

Uniform circular plate with a circular section removed as shown. The radius of the hole is R and the radius of the plate is $2 R$.

- Locate the center of mass.

Example \#6

Find the center of mass of the triangular figure shown below.

Newton's $2^{\text {nd }}$ Law \& Work-Energy

$$
\sum \vec{F}_{e x t}=M \vec{a}_{c m}
$$

$$
\begin{gathered}
\text { and } \\
W_{e x t}=\int_{\vec{r}_{c m, i}}^{\vec{r}_{c m, f}} \vec{F}_{e x t} \cdot d \vec{r}_{c m}=K_{c m, f}-K_{c m, i} \\
\text { where } K_{c m}=\frac{1}{2} M v_{c m}^{2}
\end{gathered}
$$

Example \#7

Consider three masses:
$m_{l}=4.00 \mathrm{~kg}$ located at $(-2.00 \mathrm{~m}, 3.00,0)$,
$m_{2}=4.00 \mathrm{~kg}$ located at $(1.00 \mathrm{~m},-3.00,0)$,
$m_{3}=3.00 \mathrm{~kg}$ located at $(4.00 \mathrm{~m}, 2.00,0)$,
that experience the forces (respectively):
$\mathrm{F}_{1}=6.00 \mathrm{Ni}$,
$\mathbf{F}_{2}=14.0 \mathrm{~N} \mathbf{j}$, and
$\mathbf{F}_{3}=12.0 \mathrm{~N}$ directed 45 o above the +x -axis.

- Calculate the magnitude and direction of acceleration of the center of mass.

Example \#8

A person standing on a skateboard (combined mass of 55 kg) initially at rest pushes away from a wall. When the person's hand breaks contact with the wall, the center of mass of the "person-skateboard" system has moved 18 cm and the velocity of the center of mass is $1.1 \mathrm{~m} / \mathrm{s}$.

- Calculate the work done by the wall on the person's hand while pushing away.
- Calculate the work done by the wall on the "person-skateboard" system.

