Momentum \& Impulse

Analyzing Collisions

Defining momentum...

It is harder to stop a freight train than it is to stop a car going at the same speed. (Why?)

The train has more momentum than the car.
Conceptually, momentum is "inertia in motion."
Mathematically, momentum $=$ mass X velocity

$$
\vec{p}=m \vec{v}
$$

Newton's 2 ${ }^{\text {nd }}$ Law in terms of Momentum

$$
\begin{gathered}
\sum \vec{F}=m \vec{a}=m \frac{d \vec{v}}{d t}=\frac{d \vec{p}}{d t}(m=\text { constant }) \\
\text { If } \sum \vec{F}=0, \text { then } \vec{p}=\mathrm{constant}
\end{gathered}
$$

For a system of particles: $\vec{P}=\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}+\ldots$

$$
\sum \vec{F}_{e x t}=\frac{d \vec{P}}{d t}
$$

$$
\text { If } \sum \vec{F}_{\text {ext }}=0 \text {, then } \vec{P}=\text { constant }
$$

Example \#1

A stream of bullets each having a mass m and speed v are fired at a block of mass M that is initially at rest on a frictionless horizontal tabletop.

- Calculate the speed of the block after is has absorbed 8 bullets.

Example \#2

Two masses (m_{1} and m_{2}) on a frictionless horizontal tabletop are connected by a spring. The masses are pulled apart and then released.

- What fraction of the total kinetic energy will each block have?

What is a Collision?

An isolated event in which a relatively strong force acts on each particle for a relatively short time (e.g., two billiard balls).

Applying Newton's $2^{\text {nd }}$ law, $\sum \vec{F}=\frac{d \vec{p}}{d t}$:

$$
d \vec{p}=\vec{F}(t) d t
$$

$$
\begin{gathered}
\Delta \vec{p}=\vec{F} \Delta t(\text { constant force }) \\
\left.\Delta \vec{p}=\int_{t_{i}}^{t_{f}} \vec{F}(t) d t \quad \text { (variable force }\right)
\end{gathered}
$$

Defining Impulse

$$
\begin{gathered}
\Delta \vec{p}=\int_{t_{i}}^{t_{f}} \vec{F}(t) d t=\vec{p}_{f}-\vec{p}_{i} \equiv \vec{J}(\text { Impulse }) \\
\text { or } \vec{J}=F_{\text {ave }} \Delta t
\end{gathered}
$$

That is, an impulse is a change in momentum.

Example \#3

Example: A 140-gram ball hits a wall normal to its surface at a speed of $39 \mathrm{~m} / \mathrm{s}$ and rebounds straight back with the same speed in a time of 1.2 ms .

- Calculate the impulse that the wall exerts on the ball to reverse its direction.
- Calculate the force and the average acceleration of the ball during the collision.
- Calculate the work done on the ball by the wall.

Types of Collisions

Elastic collision:
Particles rebound with no lasting deformation or generation of heat. (\vec{p} and K are both conserved.)

Inelastic collision:
Particles permanently deform, generate heat, and possibly stick together. (\vec{p} is conserved, but K is not conserved.)

Totally inelastic collision:
The particles stick together after the collision. (Again, \vec{p} is conserved, but K is not conserved.)

1-D Inelastic Collision Example

A ballistic pendulum was an old-fashioned way to measure the speed of bullets. A bullet having a mass of 9.5 grams hit a large block having a mass of 5.4 kg causing it to swing up to a height of 6.3 cm .

- Calculate the speed of the bullet.

1-D Elastic Collisions

Conservation of momentum and kinetic energy:
$p: \quad m_{1} v_{l i}+m_{2} v_{2 i}=m_{l} v_{l f}+m_{2} v_{2 f}$
$K: \quad \frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}$
Given $m_{l}, m_{2}, v_{l i}$ and $v_{2 i}$, solve for $v_{l f}$ and $v_{2 f}$:

$$
\begin{aligned}
& v_{1 f}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) v_{1 i}+\left(\frac{2 m_{2}}{m_{1}+m_{2}}\right) v_{2 i} \\
& v_{2 f}=\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right) v_{1 i}+\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) v_{2 i}
\end{aligned}
$$

Example \#4: Slingshot Effect

A space probe initially moving right at $14 \mathrm{~km} / \mathrm{s}$ approaches a planet moving left at $13 \mathrm{~km} / \mathrm{s}$. The satellite orbits the planet for half an orbit and rebounds to the left.

- Determine the speed of the satellite after the encounter.

2-D Elastic Collisions

$p_{x}: \quad m_{1} v_{l i}=m_{1} v_{l f} \cos \theta_{l}+m_{2} v_{2 f} \cos \theta_{2}$
$p_{y}: \quad 0=-m_{l} v_{l f} \sin \theta_{l}+m_{2} v_{2 f} \sin \theta_{2}$
$K: \quad \frac{1}{2} m_{1} v_{1 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}$

Example: \#5 (2-D Totally Inelastic)

A $830-\mathrm{kg}$ car traveling east and a $550-\mathrm{kg}$ car traveling north collide at an intersection and stick together. V1 $=6.2 \mathrm{~km} / \mathrm{hr}, \mathrm{V} 2=7.8 \mathrm{~km} / \mathrm{s}$.

- Determine the final velocity of the wreckage immediately after the accident.
- Calculate the fractional change in the kinetic energy that occurs.

Example \#6

A prankster places a firecracker inside of a coconut of mass M that is initially at rest on a frictionless horizontal tabletop. The explosion blows that fruit apart into three pieces.

Given that $M_{C}=0.30 M$, $M_{B}=0.20 M, v_{C}=5.0 \mathrm{~m} / \mathrm{s}$, and the angles shown, calculate v_{A} and v_{B}.

