Applications of Newton's Laws

Friction \& Drag

Friction

...is a complex phenomenon that is not well understood.
Experimental studies indicate...

- $|f| \propto N$
- $|f|$ is independent of area of contact.
- $|f| \cong$ constant ($1 \mathrm{~cm} / \mathrm{s} \leq v \leq$ few m / s)
...for dry unlubricated surfaces.

Types of Friction

- Static $(v=0)$.
- Kinetic $(v \neq 0)$.
- Rolling $\left(f_{r} \ll f_{k}\right)$
- Drag $|f| \propto v^{n}$.

Recall Newton's $3^{\text {rd }}$ law of motion:

$$
\vec{F}_{A B}=-\vec{F}_{B A}
$$

Action-reaction forces act on
2 bodies objects.

NEVER on the same object.

Kinetic vs. Static Friction

Kinetic Friction:
When surface slide past each other: $\quad f_{k}=\mu_{k} N$

Static Friction:
When NO sliding occurs: $\quad f_{s} \leq \mu_{s} N$

In general:

$$
\mu_{s}>\mu_{k}
$$

Example \#1

A $2.0-\mathrm{kg}$ mass is initially at rest on a horizontal surface. The coefficients of static and kinetic friction are 0.20 and 0.15 , respectively. The surface is slowly tilted.

- Find the critical angle where the mass "breaks away" and starts to slide down the incline.
- After the mass "breaks away," at this critical angle, what is the acceleration of the mass?
- To what angle should the surface changed so that the mass slides down with zero acceleration?

Example \#2

A 3.0-kg object slides upon a horizontal surface when acted upon by a force of 12 N supplied by a cord attached to the front of the object and makes an angle of 20° above the $+x$-axis. The force of (kinetic) friction is 2.0 N .

- Calculate the magnitude of the normal force.
- Calculate the acceleration of the object.
- Calculate the coefficient of (kinetic) friction.

Example \#2 (cont'd)

The pulling force caused by the cord is then slowly increased.

- How large can the pulling force get before the block start to lift off of the floor?
- When this occurs, what is the acceleration of the block?

Example \#3

A book of mass of 3.0 kg is pressed against a vertical wall and held at rest by a horizontal force. The coefficient of (static) friction is 0.20 .

- Calculate the minimum force that can be applied before the book starts to slip and slide down the wall.

Example \#4

A block is kicked to the right such that it has an initial speed of $3.0 \mathrm{~m} / \mathrm{s}$ when it leaves the kicker's foot. The coefficient of (kinetic) friction between the block and the floor is 0.25 .

- Calculate the acceleration of the block after it leaves the kicker's foot.
- How far does the block slide after the kick?

Example \#5

Consider the situation below:

The coefficient of kinetic friction is 0.20 between all surfaces in contact. (The pulley is frictionless.)

- Find the magnitude of the force F such that the lower block accelerates to the right at $2.0 \mathrm{~m} / \mathrm{s}^{2}$.
- Calculate the tension in the string that connects the two blocks.

Can you use different coordinates in the same problem?

YES!

Drag Force \& Terminal Speed

Take a steel ball and drop in vacuum, air, water...

Initially (when the object is released from rest), the drag force is zero.

As the object falls, D increases until $D=m g$.

$$
\text { That is, } \sum F_{y}=0
$$

Acceleration becomes zero and the object falls with a constant velocity (the terminal velocity).

$$
\frac{1}{2} C \rho A v^{2}=m g \quad \Rightarrow \quad v_{t}=\sqrt{\frac{2 m g}{C \rho A}}
$$

